
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Atom

- Assume its negation for RAA, then seek a contradiction; by means of the contradiction, discharge the assumption by RAA, obtaining the desired atom.

$$
(\sim P \rightarrow Q), \sim Q \mid-P
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Negation

- Assume the unnegated WFF for RAA, then seek a contradiction, discharge the assumption, obtaining the desired negation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\sim(P \vee Q) \mid-\sim P$			
1	(1) $\sim(P \vee Q)$	A	$\mid-\sim P$
2	(2) P	A (for RAA)	
2	(3) ($\mathrm{P} \vee \mathrm{Q}$)	2 vl	
1	(4) $\sim P$	1,3 RAA (2)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conditional

\qquad

- Assume its antecedent for $\rightarrow I$, then establish
\qquad its consequent; discharge the assumed antecedent by \rightarrow, obtaining the desired \qquad conditional.

$(P \vee Q) \mid-(\sim P \rightarrow Q)$			
1	(1) ($P \vee Q)$	A	$1-(\sim P \rightarrow Q)$
	(2) $\sim P$	A (for \rightarrow I)	
	(3) Q	1,2 vE	
	(4) ($\sim P \rightarrow Q)$	$3 \rightarrow 1$ (2)	

\qquad
\qquad
2 (2) $\sim P \quad A(f o r \rightarrow$ P)
1,2 (3) $\mathrm{Q} \quad 1,2 \mathrm{vE}$ \qquad
\qquad
\qquad
\qquad
\qquad

Conjunctions
- Obtain its conjuncts separately, then use \&l to
obtain the desired conjunction.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$(P \rightarrow Q),(P \& R) \mid-(Q \& R)$			
1	(1) ($P \rightarrow Q$)	A	
2	(2) (P \& R)	A	I- (Q \& R)
2	(3) R	2 \&	
2	(4) P	2 \&	
1,2	(5) Q	$1,4 \rightarrow \mathrm{E}$	
1,2	(6) (Q \& R)	3,5 \&	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Biconditional

- Obtain the two required conditionals separately, then use \leftrightarrow । to obtain the desired biconditional.

$$
(P \leftrightarrow Q) \mid-(Q \leftrightarrow P)
$$

\qquad
$1 \quad(1)(P \leftrightarrow Q) \quad A$
$1 \quad(2)(Q \rightarrow P) \quad 1 \leftrightarrow E$
$1 \quad$ (3) $(P \rightarrow Q) \quad 1 \leftrightarrow E$
$1 \quad(4)(Q \leftrightarrow P) \quad 2,3 \leftrightarrow I$
I- $(\mathrm{Q} \leftrightarrow P)$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disjunction

\qquad

- Assume its negation for RAA, then perform \qquad
\qquad
I. Assume one of the disjuncts of the disjunction
II. Use vl to obtain the disjunction
III. Use RAA to discharge the assumed disjunct
(Bear in mind that this procedure can be repeated, starting with the other disjunct.)

	$(\mathrm{P} \leftrightarrow \mathrm{Q}) \quad \mid-(\mathrm{Q} \leftrightarrow \mathrm{P})$		
1	(1) ($\mathrm{P} \leftrightarrow \mathrm{Q}$)	A	$\mathrm{I}-(\mathrm{Q} \leftrightarrow \mathrm{P})$
1	(2) ($Q \rightarrow P$)	$1 \leftrightarrow E$	
1	(3) ($\mathrm{P} \rightarrow \mathrm{Q}$)	$1 \leftrightarrow E$	
1	(4) $(Q \leftrightarrow P)$	$2,3 \leftrightarrow 1$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\sim(\sim P \& \sim Q) \mid-(P \vee Q)$			
1	(1) $\sim(\sim P$ \& Q)	A	I- (P v Q)
2	(2) ~($\mathrm{P} v \mathrm{Q}$)	A (for RAA)	
3	(3) P	A (for RAA)	
3	(4) ($\mathrm{P} \vee \mathrm{Q}$)	3 vl	
2	(5) \sim	2,4 RAA (3)	
6	(6) Q	A (for RAA)	
6	(7) (P , Q)	6 vl	
2	(8) $\sim Q$	2,7 RAA (6)	
2	(9) ($\sim P$ \& ~Q)	5,8 \&	
1	(10) ($\mathrm{P} \vee \mathrm{Q}$)	1,9 RAA (2)	

